

Mark Scheme (Results)

January 2020

Pearson Edexcel International Advanced Subsidiary Level In Physics (WPH12) Paper 01 Waves and Electricity

Question	Answer	Mark
Number		
1	B is the correct answer (A path difference of λ would cause constructive	
•	interference	
	A is not the correct answer as this path difference would cause destructive	
	interference	
	C is not the correct answer as this phase difference would cause neither	
	constructive nor destructive interference	
	D is not the correct answer as this phase difference would cause destructive	(1)
<u> </u>	interference	(1)
2	D is the correct answer (Polarised waves have oscillations in one direction	
	and perpendicular to the direction of wave travel)	
	A is not the correct answer as the single plane of polarisation includes the	
	direction of wave travel and is not perpendicular to it	
	B is not the correct answer as polarised waves do not contain many plames	
	C is not the correct answer as polarised waves do not contain many directions	(1)
3	D is the correct answer (Total resistance in series is 10Ω and 2.5Ω in	
	parallel)	
	A is not the correct answer as the two resistances are the wrong way around	
	B is not the correct answer as this assumes the formulae for series and parallel	
	resistors are the same	
	C is not the correct answer as this assumes the formulae for series and parallel	(1)
4	resistors are the same A is the correct answer (Both points X and Y represent positions on the	(1)
4	graph where there is infinite resistance as the current is zero)	
	graph where there is infinite resistance as the current is zero)	
	B is not the correct answer as there is a non-infinite resistance at Z	
	C is not the correct answer as there is also infinite resistance at Y	
	D is not the correct answer as there is a non-infinite resistance at Z	(1)
5	D is the correct answer (Drift velocity is I/nqA)	
	A is not the correct answer as drift velocity is not I/nA	
	B is not the correct answer as drift velocity is not nqA/I	
	C is not the correct answer as drift velocity is not nA/I	(1)
6	B is the correct answer ($hf = \Phi + KE_{max}$ so increasing f increases KE_{max})	
	A is not the correct answer as electrons are released instantaneously	
	C is not the correct answer as electrons are released instantaneously	
	electrons released and each electron still has the same kinetic energy	
	D is not the correct answer as it is higher frequency, not wavelength, that	
	eventually passes a threshold value to release electrons	(1)
7	A is the correct answer (Reading on V ₁ decreases, readings on V ₂ and A	
	increase)	
	B is not the correct answer as the decreased resistance of the thermistor will	
	lead to a greater share of the p.d. across the fixed resistor	
	C is not the correct answer as the meter readings show what would happen if	
	the temperature decreased	
	D is not the correct answer as none of the three meter readings would change	(4)
	in the ways stated	(1)

8	C is the correct answer (Both transverse and longitudinal waves can be refracted)	
	A is not the correct answer as it is only electromagnetic waves that travel at the same speed in a vacuum – there are other transverse waves which travel at different speeds	
	B is not the correct answer as transverse waves have vibrations that are perpendicular to the direction of wave travel	
	D is not the correct answer as light is a transverse wave that can travel through liquids	(1)
9	C is the correct answer (The diffraction grating is set up so that it is parallel to the screen)	
	A is not the correct answer as θ is calculated by taking measurements of diffraction grating to screen distance and the distance between bright dots then using trigonometry	
	B is not the correct answer as the diffraction grating should be perpendicular to the laser light beam	
	D is not the correct answer as the distance between the bright dots is best measured using a metre rule	(1)
10	A is the correct answer (Evidence for the wave nature of electrons came from experiments involving diffraction)	
	B is not the correct answer C is not the correct answer	
	D is not the correct answer	(1)

Question Number	Answer	Mark
11a	Recognises that node to node distance = $\lambda/2$	
	$\mathbf{Or} \ \lambda = L/2 \ \text{stated} \tag{1}$	
	Wavelength = 0.85 m (1)	
	Example of calculation	
	Node to node distance = $\lambda/2$.	
	String has 4 loops so total length of string is 2λ	
	$\lambda = 1.70 \text{ m} / 2 = 0.85 \text{ m}.$	(2)
11b	Use of $v = \sqrt{T/\mu}$ (1)	
	Use of $T = mg$ (1)	
	$v = 21 \text{ m s}^{-1}$ (1)	
	Example of calculation	
	$T = mg = 0.20 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.96 \text{ N}$	
	$v = \sqrt{(T/\mu)} = \sqrt{(1.96 \text{ N} / 4.5 \times 10^{-3} \text{ kg m}^{-1})} = 20.9 \text{ m s}^{-1}$	
		(3)
11c	T and μ are the same	
	Or (As f decreases,) λ increases (1)	
	Speed would be the same	
	Or There is no effect (on the speed) (1)	
	1 /	(2)
	Total for question 11	7

Question Number	Answer			Mark
12ai	Use of $I = P/A$		(1)	
	Maximum energy received in one ha	our = $3.6 \times 10^{19} \text{J}$	(1)	
	2,			
	Example of calculation			
	$P = I \times A = (1100 \text{ Wm}^{-2}) \times (9.2 \times 1)$	$0^{12} \mathrm{m}^2$) = $1.0 \times 10^{16} \mathrm{W}$		
	$E = P \times t = (1.0 \times 10^{16} \text{ W}) \times (60 \times 60)$	$50) = 3.6 \times 10^{19} \mathrm{J}$		
	, , ,	,		(2)
12aii	Calculates total energy usage in 201	4		
	Or Calculates total energy received	by solar panels in 1 year	(1)	
	Comparison of energies (hours with	hours or years with years) to come	(1)	
	to a correct conclusion.		(1)	
	Allow e.c.f. from values in (a)(i)			
	Possible comparisons:	1		
	Total energy worldwide in 2014	Total energy received by solar panels		
	23800 TWh (in a year)	87,600,000 TWh (if using 24 hours)		
	23800 TWh (in a year) 8.6 × 10 ¹⁹ J (in a year)	43,800,000 TWh (if using 12 hours) 3.2 × 10 ²³ J (if using 24 hrs)		
	$8.6 \times 10^{-9} \text{ J (in a year)}$	1.6×10^{23} J (if using 12 hrs)		
	$9.8 \times 10^{15} \text{J (in an hour)}$	$3.6 \times 10^{19} \text{J (in an hour)}$		
	Example of calculation			
	Total E worldwide in 1 year = 23,80	$00 \times (3.6 \times 10^{15} \mathrm{J}) = 8.6 \times 10^{19} \mathrm{J}$		
	$8.6 \times 10^{19} \text{J} / 3.6 \times 10^{19} \text{J} = 2.4 \text{ (hours)}$	rs), so worldwide electrical energy		
	consumption for 2014 would be pro	duced in less than 3 hours		
				(2)
12b	MAX 2 from:			
	Sand(storms) reduce amount/intensi	ity/energy/power of light	(1)	
	Fewer electrons released in the (sola	ar) panel	(1)	
		41.4		
	Sand(storms) absorbs/blocks/reflects some light (1)			
	Sand(storms) reduces area of panel/desert (1)			
	T			(2)
	Total for question 12			6

Question	Answer		Mark
Number			
*13	This question assesses a student's ability to show a co structured answer with linkages and fully-sustained re	~ ·	
	Marks are awarded for indicative content and for how and shows lines of reasoning.	the answer is structured	
	The following table shows how the marks should be a content.	warded for indicative	
	Number of marks		
	indicative awarded for		
	marking points indicative		
	seen in answer marking points		
	6 4		
	5–4 3		
	3–2 2		
	1 1		
	0 0		
	The following table shows how the marks should be a	warded for structure and	
	lines of reasoning.		
	of a	nber of marks awarded for structure nswer and sustained line of reasoning	
	Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout	2	
	Answer is partially structured with some linkages	1	
	and lines of reasoning		
	Answer has no linkages between points and is	0	
		0	
	unstructured		
	 Ultrasound is <u>reflect</u>ed from boundari (This reflection is caused by) change Time taken between pulse being sent Speed of ultrasound is known Speed = distance/time can be used (to boundary) Clear indication that this calculation is distance (Candidates can potentially achieve 1 linkage) 	in density and received measured calculate the distance to ncludes ½ time or ½	
	both IC1 and IC2. They can potentially achie have scored 3 of IC3-6)	•	
			(6)
	Total for question 13		6

Minimum energy required to release/emit a (photo)electron (from the surface of the metal) (1) (1) (1) (1) (1) (1) (1) (Question Number	Answer		Mark
Ultraviolet has a higher (photon) energy (than visible light) Ultraviolet (photons) have an energy greater than the work function Or Visible light (photons) have an energy less than the work function OR Ultraviolet has a higher frequency (than visible light) (1) Ultraviolet has a frequency greater than the threshold frequency Or Visible light has a frequency less than the threshold frequency (Allow converse statements for MP1) (2) 14ci (Increased intensity means) more photons per second (More photons leads to) more electrons emitted (per second) (For MP1 there needs to be an indication of rate e.g. "per unit time") (3) 14cii Use of $E = hf$ Use of $V = W/Q$ Use of $V = W/Q$ Use of $V = W/Q$ Work function = $V = V = V = V = V = V = V = V = V = $			(1)	
Or Visible light (photons) have an energy less than the work function OR Ultraviolet has a higher frequency (than visible light) Ultraviolet has a frequency greater than the threshold frequency Or Visible light has a frequency less than the threshold frequency (Allow converse statements for MP1) (Allow converse statements for MP1) (Increased intensity means) more photons per second (I) (More photons leads to) more electrons emitted (per second) (I) Reading on ammeter is increased Or Current is increased (I) (For MP1 there needs to be an indication of rate e.g. "per unit time") (3) 14cii Use of $E = hf$ (I) Use of $V = W/Q$ (I) Use of $hf = \Phi + \frac{1}{2} mv^2_{max}$ (I) Work function = 7.6×10^{-19} (J) Example of Calculation $hf = \Phi + \frac{1}{2} mv^2_{max} = hf = \Phi + QV$ $hf = (6.63 \times 10^{-34} \text{ Js}) (2.00 \times 10^{15} \text{ Hz}) = 1.33 \times 10^{-18} \text{ J}$ $QV/eV = (1.60 \times 10^{-19} \text{ C}) (3.59 \text{ V}) = 5.74 \times 10^{-19} \text{ J}$ $hf - \text{eV} = 7.56 \times 10^{-19} \text{ J}$	14b	Ultraviolet has a higher (photon) energy (than visible light)	(1)	(1)
Ultraviolet has a higher frequency (than visible light) Ultraviolet has a frequency greater than the threshold frequency Or Visible light has a frequency less than the threshold frequency (1) (Allow converse statements for MP1) (Increased intensity means) more photons per second (I) (More photons leads to) more electrons emitted (per second) (Reading on ammeter is increased Or Current is increased (For MP1 there needs to be an indication of rate e.g. "per unit time") (3) 14cii Use of $E = hf$ (1) Use of $V = W/Q$ Use of $F = \Phi + \frac{1}{2} mv^2_{\text{max}}$ (I) Work function = $F = \Phi + \frac{1}{2} mv^2_{\text{max}} = \frac{1}{2} \Phi + \frac{1}{2} m$			(1)	
Or Visible light has a frequency less than the threshold frequency (Allow converse statements for MP1) (Allow converse statements for MP1) (Increased intensity means) more photons per second (I) (More photons leads to) more electrons emitted (per second) (Reading on ammeter is increased Or Current is increased (I) (For MP1 there needs to be an indication of rate e.g. "per unit time") (3) 14cii Use of $E = hf$ (1) Use of $V = W/Q$ Use of $hf = \Phi + \frac{1}{2} mv^2_{\text{max}}$ (I) Work function = 7.6×10^{-19} (J) Example of Calculation $hf = \Phi + \frac{1}{2} mv^2_{\text{max}} = hf = \Phi + QV$ $hf = (6.63 \times 10^{-34} \text{ Js}) (2.00 \times 10^{15} \text{ Hz}) = 1.33 \times 10^{-18} \text{ J}$ $QV/eV = (1.60 \times 10^{-19} \text{ C}) (3.59 \text{ V}) = 5.74 \times 10^{-19} \text{ J}$ $hf - eV = 7.56 \times 10^{-19} \text{ J}$			(1)	
14ci (Increased intensity means) more photons per second (1) (More photons leads to) more electrons emitted (per second) (1) Reading on ammeter is increased Or Current is increased (1) (For MP1 there needs to be an indication of rate e.g. "per unit time") (3) 14cii Use of $E = hf$ (1) Use of $V = W/Q$ (1) Use of $hf = \Phi + \frac{1}{2}mv^2_{\text{max}}$ (1) Work function = 7.6×10^{-19} (J) Example of Calculation $hf = \Phi + \frac{1}{2}mv^2_{\text{max}} = hf = \Phi + QV$ $hf = (6.63 \times 10^{-34} \text{ Js}) (2.00 \times 10^{15} \text{ Hz}) = 1.33 \times 10^{-18} \text{ J}$ $QV/eV = (1.60 \times 10^{-19} \text{ C}) (3.59 \text{ V}) = 5.74 \times 10^{-19} \text{ J}$ $hf - eV = 7.56 \times 10^{-19} \text{ J}$ (4)			(1)	
14ci (Increased intensity means) more photons per second (1) (More photons leads to) more electrons emitted (per second) (1) Reading on ammeter is increased Or Current is increased (1) (For MP1 there needs to be an indication of rate e.g. "per unit time") (3) 14cii Use of $E = hf$ (1) Use of $V = W/Q$ (1) Use of $hf = \Phi + \frac{1}{2} mv^2_{max}$ (1) Work function = 7.6×10^{-19} (J) (1) $\frac{\text{Example of Calculation}}{hf = \Phi + \frac{1}{2} mv^2_{max} = hf = \Phi + QV} hf = (6.63 \times 10^{-34} \text{ Js}) (2.00 \times 10^{15} \text{ Hz}) = 1.33 \times 10^{-18} \text{ J}$ $QV/eV = (1.60 \times 10^{-19} \text{ C}) (3.59 \text{ V}) = 5.74 \times 10^{-19} \text{ J}$ $hf - eV = 7.56 \times 10^{-19} \text{ J}$ (4)		(Allow converse statements for MP1)		(2)
Reading on ammeter is increased Or Current is increased (1) (For MP1 there needs to be an indication of rate e.g. "per unit time") (3) 14cii Use of $E = hf$ (1) Use of $V = W/Q$ (1) Use of $hf = \Phi + \frac{1}{2} mv^2_{\text{max}}$ (1) Work function = 7.6×10^{-19} (J) Example of Calculation $hf = \Phi + \frac{1}{2} mv^2_{\text{max}} = hf = \Phi + QV$ $hf = (6.63 \times 10^{-34} \text{ Js}) (2.00 \times 10^{15} \text{ Hz}) = 1.33 \times 10^{-18} \text{ J}$ $QV/eV = (1.60 \times 10^{-19} \text{ C}) (3.59 \text{ V}) = 5.74 \times 10^{-19} \text{ J}$ $hf - \text{eV} = 7.56 \times 10^{-19} \text{ J}$ (4)	14ci	(Increased intensity means) more <u>photons</u> per second	(1)	(2)
Or Current is increased (For MP1 there needs to be an indication of rate e.g. "per unit time") (3) 14cii Use of $E = hf$ (1) Use of $V = W/Q$ (1) Use of $hf = \Phi + \frac{1}{2} mv^2_{max}$ (1) Work function = 7.6×10^{-19} (J) Example of Calculation $hf = \Phi + \frac{1}{2} mv^2_{max} = hf = \Phi + QV$ $hf = (6.63 \times 10^{-34} \text{ Js}) (2.00 \times 10^{15} \text{ Hz}) = 1.33 \times 10^{-18} \text{ J}$ $QV/eV = (1.60 \times 10^{-19} \text{ C}) (3.59 \text{ V}) = 5.74 \times 10^{-19} \text{ J}$ $hf - eV = 7.56 \times 10^{-19} \text{ J}$ (4)		(More photons leads to) more electrons emitted (per second)	(1)	
14cii Use of $E = hf$ (1) Use of $V = W/Q$ (1) Use of $hf = \Phi + \frac{1}{2} mv^2_{\text{max}}$ (1) Work function = 7.6×10^{-19} (J) Example of Calculation $hf = \Phi + \frac{1}{2} mv^2_{\text{max}} = hf = \Phi + QV$ $hf = (6.63 \times 10^{-34} \text{ Js}) (2.00 \times 10^{15} \text{ Hz}) = 1.33 \times 10^{-18} \text{ J}$ $QV/eV = (1.60 \times 10^{-19} \text{ C}) (3.59 \text{ V}) = 5.74 \times 10^{-19} \text{ J}$ $hf - eV = 7.56 \times 10^{-19} \text{ J}$ (4)		1	(1)	
Use of $V = W/Q$ (1) Use of $hf = \Phi + \frac{1}{2} mv^2_{\text{max}}$ (1) Work function = 7.6×10^{-19} (J) Example of Calculation $hf = \Phi + \frac{1}{2} mv^2_{\text{max}} = hf = \Phi + QV$ $hf = (6.63 \times 10^{-34} \text{ Js}) (2.00 \times 10^{15} \text{ Hz}) = 1.33 \times 10^{-18} \text{ J}$ $QV/eV = (1.60 \times 10^{-19} \text{ C}) (3.59 \text{ V}) = 5.74 \times 10^{-19} \text{ J}$ $hf - eV = 7.56 \times 10^{-19} \text{ J}$ (4)		(For MP1 there needs to be an indication of rate e.g. "per unit time")		(3)
Use of $hf = \Phi + \frac{1}{2} mv^2_{\text{max}}$ (1) Work function = 7.6×10^{-19} (J) Example of Calculation $hf = \Phi + \frac{1}{2} mv^2_{\text{max}} = hf = \Phi + QV$ $hf = (6.63 \times 10^{-34} \text{ Js}) (2.00 \times 10^{15} \text{ Hz}) = 1.33 \times 10^{-18} \text{ J}$ $QV/eV = (1.60 \times 10^{-19} \text{ C}) (3.59 \text{ V}) = 5.74 \times 10^{-19} \text{ J}$ $hf - eV = 7.56 \times 10^{-19} \text{ J}$ (4)	14cii	Use of $E = hf$	(1)	
Work function = 7.6×10^{-19} (J) Example of Calculation $hf = \Phi + \frac{1}{2} mv^2_{\text{max}} = hf = \Phi + QV$ $hf = (6.63 \times 10^{-34} \text{ Js}) (2.00 \times 10^{15} \text{ Hz}) = 1.33 \times 10^{-18} \text{ J}$ $QV/eV = (1.60 \times 10^{-19} \text{ C}) (3.59 \text{ V}) = 5.74 \times 10^{-19} \text{ J}$ $hf - eV = 7.56 \times 10^{-19} \text{ J}$ (4)		Use of $V = W/Q$	(1)	
Work function = 7.6 × 10 10 (J) Example of Calculation $hf = \Phi + \frac{1}{2} mv_{\text{max}}^2 = hf = \Phi + QV$ $hf = (6.63 \times 10^{-34} \text{ Js}) (2.00 \times 10^{15} \text{ Hz}) = 1.33 \times 10^{-18} \text{ J}$ $QV/eV = (1.60 \times 10^{-19} \text{ C}) (3.59 \text{ V}) = 5.74 \times 10^{-19} \text{ J}$ $hf - eV = 7.56 \times 10^{-19} \text{ J}$ (4)		Use of $hf = \Phi + \frac{1}{2} mv^2_{\text{max}}$	(1)	
$hf = \Phi + \frac{1}{2} mv^{2}_{\text{max}} = hf = \Phi + QV$ $hf = (6.63 \times 10^{-34} \text{ Js}) (2.00 \times 10^{15} \text{ Hz}) = 1.33 \times 10^{-18} \text{ J}$ $QV/eV = (1.60 \times 10^{-19} \text{ C}) (3.59 \text{ V}) = 5.74 \times 10^{-19} \text{ J}$ $hf - eV = 7.56 \times 10^{-19} \text{ J}$ (4)		Work function = 7.6×10^{-19} (J)	(1)	
		$hf = \Phi + \frac{1}{2} mv^2_{\text{max}} = hf = \Phi + QV$ $hf = (6.63 \times 10^{-34} \text{ Js}) (2.00 \times 10^{15} \text{ Hz}) = 1.33 \times 10^{-18} \text{ J}$ $QV/eV = (1.60 \times 10^{-19} \text{ C}) (3.59 \text{ V}) = 5.74 \times 10^{-19} \text{ J}$		
1 10191 for dilection 14		Total for question 14		(4) 10

Question Number	Answer		Mark
15a	There is a decrease in speed/velocity	(1)	
	Part of the wavefront meets the boundary before the rest	(1)	
	(Ignore references to density and refractive index) (Allow MP2 for correct addition to the diagram by eye for wavefronts both before and after the boundary)		(2)
15bi	Use of $v = \sqrt{\frac{g\lambda}{2\pi}}$ to find speed in deep water	(1)	
	Use of $v = \sqrt{(gd)}$ to find speed in shallow water	(1)	
	Calculates ratio of speeds	(1)	
	Correctly equates ratio of speeds to ratio of sine of each angle	(1)	
	$r = 17^{\circ}$	(1)	
	Example of calculation $v = \sqrt{\frac{g\lambda}{2\pi}} = \sqrt{\frac{(9.81 \text{ms}^{-2} \times 15 \text{ m})}{2\pi}} = 4.8 \text{ ms}^{-1} \text{ (deep water)}$ $v = \sqrt{(gd)} = \sqrt{(9.81 \text{ ms}^{-2} \times 0.50 \text{ m})} = 2.2 \text{ ms}^{-1} \text{ (shallow water)}$ ratio of speeds = $(4.8 \text{ ms}^{-1}) / (2.2 \text{ ms}^{-1}) = 2.2$ $\sin r = \sin (40) / 2.2 = 0.29$ $r = 17^{\circ}$		
15bii	Use of $f = 1/T$ and $v = f\lambda$ to find speed of wave	(1)	(5)
	Use of $v = \sqrt{\frac{g\lambda}{2\pi}}$ to find same speed in deep water, confirming that deep water equation is the correct equation for this wave	(1)	
	Deep water equation only works if $d > 342 / 2$ so d must be > 171 m	(1)	
	Example of calculation f = 1 / 14.8 s = 0.0676 Hz $v = 0.0676 \text{ Hz} \times 342 \text{ m} = 23.1 \text{ ms}^{-1}$ $v = \sqrt{\frac{g\lambda}{2\pi}} = \sqrt{\frac{(9.81 \text{ms}^{-2} \times 342 \text{ m})}{2\pi}} = 23.1 \text{ ms}^{-1} \text{ (deep water)}$		
			(3)
	Total for question 15		10

Question Number	Answer		Mark
16a	Waves spread out (as they pass through the gap)	(1)	
	Each point on the wave(front) acts as a source of new/secondary wave(let)s	(1)	(2)
16b	Maximum intensity halfway between A and B (by eye)	(1)	(2)
	Central maximum broader than other maxima (by eye)	(1)	
	Central maximum greater than twice the height from zero intensity (by eye) of other maxima	(1)	
	A Distace B		(3)
	Total for question 16		5

Question Number	Answer		Mark
17a	Energy (supplied) to/per unit charge		
	Or Work done (supplied) to/per unit charge Or The work done moving unit charge around the whole circuit	(1)	(1)
17bi	Use of sum of e.m.f. = sum of p.d.	,	
	Or see $\mathcal{E} = V + Ir$ with correct substitutions	(1)	
	$r = 1.9 \times 10^{-2} \Omega$	(1)	
	Example of calculation		
	$\mathcal{E} = V + Ir$, 12.0 V = 11.81 V + (9.83 A) r. so $r = 0.0193 \Omega$		
1=- 44		(4)	(2)
17bii		(1) (1)	
	Determine the gradient Gradient is $-r$	(1)	
	OR		
		(1)	
		(1) (1)	
	OR		
	Plot $(\mathcal{E} - V)$ against I	(1)	
	Determine the gradient	(1) (1)	
	Gradient is r	(1)	(2)
			(3)

17c	Calculates circuit current using $I = \mathcal{E} / \text{Total } R$		
	Or Calculates p.d. across fixed resistor using potential divider equation	(1)	
	Use of a power equation (to calculate Power dissipated in fixed resistor)	(1)	
	Divides final power by initial power		
	Or Divides difference in power by initial power		
	Or Calculates 70% of initial power	(1)	
	Calculated value for final power/initial power is greater than 70% of		
	initial power so student incorrect		
	Or Calculated value for difference between initial and final power is		
	less than 30% so student incorrect		
	Or Calculated value for 70% of initial power is less than the final power so student incorrect	(1)	
	so student incorrect	(1)	
	(Candidates who use incorrect values of I, V or R in either power		
	calculation for MP2 cannot be awarded MP3 or MP4)		
	Example of calculation		
	Initially $I = \mathcal{E} / \text{Total } R = 9.0 \text{ V} / (5.0 + 0.10 \Omega) = 1.76 \text{ A}$		
	Power of external resistor = $I^2 R = (1.76 \text{ A})^2 (5.0 \Omega) = 15.5 \text{ W}$		
	When $r = 0.50 \Omega$, $I = \mathcal{E} / \text{Total } R = 9.0 \text{ V} / (5.0 + 0.50 \Omega) = 1.64 \text{ A}$		
	Power of external resistor = $I^2 R = (1.64 \text{ A})^2 (5.0 \Omega) = 13.4 \text{ W}$		
	Percentage of original value = $(13.4 \text{ W}) / (15.5 \text{ W}) = 0.86 \text{ (or } 86\%)$		
			(4)
	Total for question 17		10

T s	Calculates distance travelled by sound in $3s = 1020$ (m) Or calculates time taken for sound to travel 1 km = 2.94 (s) Or calculates speed to travel 1000m in 3 seconds = 333 (ms ⁻¹) Time taken by light to reach 1 km is almost instantaneous / 3.3×10^{-6} s	(1)	
C C T s E F F	Or calculates time taken for sound to travel 1 km = 2.94 (s) Or calculates speed to travel 1000m in 3 seconds = 333 (ms ⁻¹) Time taken by light to reach 1 km is almost instantaneous / 3.3×10^{-6} s so teacher is (approximately) correct. Example of calculation For light, $t = d/v = 1000$ m / 3.00×10^8 ms ⁻¹ = 3.33×10^{-6} s For sound, $t = d/v = 1000$ m / 340 ms ⁻¹ = 2.94 s		
T s <u>F</u> F	Time taken by light to reach 1 km is almost instantaneous / 3.3×10^{-6} s so teacher is (approximately) correct. Example of calculation For light, $t = d/v = 1000 \text{ m} / 3.00 \times 10^8 \text{ ms}^{-1} = 3.33 \times 10^{-6} \text{ s}$ For sound, $t = d/v = 1000 \text{ m} / 340 \text{ ms}^{-1} = 2.94 \text{ s}$		
s <u>F</u> F	so teacher is (approximately) correct. Example of calculation For light, $t = d/v = 1000 \text{ m} / 3.00 \times 10^8 \text{ ms}^{-1} = 3.33 \times 10^{-6} \text{ s}$ For sound, $t = d/v = 1000 \text{ m} / 340 \text{ ms}^{-1} = 2.94 \text{ s}$	(1)	
F	For light, $t = d/v = 1000 \text{ m} / 3.00 \times 10^8 \text{ ms}^{-1} = 3.33 \times 10^{-6} \text{ s}$ For sound, $t = d/v = 1000 \text{ m} / 340 \text{ ms}^{-1} = 2.94 \text{ s}$		
10L: T	II of O. L.	(1)	(3)
	~	(1)	
	Example of calculation $Q = It = 25,000 \text{ A} \times (30 \times 10^{-6} \text{ s}) = 0.75\text{C}$		(2)
		(1) (1)	()
	Example of calculation $P = VI = (1.2 \times 10^9 \text{ V}) \times 25,000 \text{ A} = 3.0 \times 10^{13} \text{ W}$		(2)
U	Use of $R = \rho l/A$	(1) (1) (1)	, ,
C R	Example of calculation Cross sectional area of wire = $\pi r^2 = \pi (2.5 \times 10^{-2})^2 = 1.96 \times 10^{-3} \text{ m}^2$ $R = V/I = (1.2 \times 10^9 \text{ V}) / 25,000 \text{ A} = 48,000 \Omega$ $S = RA/I = (48,000 \Omega) (1.96 \times 10^{-3} \text{ m}^2) / 400 \text{ m} = 0.235 \Omega \text{m}$		
	$\frac{10.000}{10.000} \frac{22}{10.00} \frac{(1.70 \times 10^{-10})}{10.00} \frac{1}{10.00} \frac{1}{10.00} \frac{1}{10.000} \frac{1}{10.000$		(3)
	Air in the lightning channel has been ionised Or Lightning channel unlikely to have a uniform diameter / CSA ((1)	(1)

	Total for question 18		16
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. ,	(1)
18cii	Different atoms/elements have different (differences in) energy levels	(1)	
			(4)
	spectrum being produced)	(1)	
	Or Photon energy is proportional to frequency (resulting in line		
	photon (resulting in line spectrum being produced)		
	Energy difference (between levels) is proportional to frequency of		
	Of (Elections) are de-excited, releasing photons	(1)	
	Or (Electrons) are de-excited, releasing photons	(1)	
	(Electrons) move back down energy levels, releasing <u>photon</u> s		
	Or <u>Electrons</u> are excited	(1)	
	(Energy makes) <u>electrons</u> move up energy levels	(1)	
18ci	Energy levels (in atoms) are discrete/specific	(1)	